非饱和土力学前沿科学问题系列讲座预告
受河南省高端外国专家引进计划(HNGD2020005)与国家自然科学基金面上项目(11772290)资助,应信阳师范学院建筑与土木工程学院邀请,美国科罗拉多矿业大学土木与环境工程系Ning Lu (卢宁)教授将于2020年9月16日至11月18日开设“非饱和土力学前沿科学问题系列讲座(18讲)“。
讲座平台:云会议平台(Zoom)
讲座用语:中文
欢迎感兴趣的同行、学者与研究生参加!
有意参加者,请将回执(姓名、单位、职位、E-mail)发给周葆春(zhoubc@xynu.edu.cn),收到回执后,主办方将课程链接发至参加者邮箱。
Ning Lu教授建议参加者每讲前下载相应链接文档(见讲座内容)。
主讲人简介:Ning Lu (卢宁),美国科罗拉多矿业大学土木与环境工程系教授,美国国家地质调查局—科罗拉多矿业大学岩土工程联合实验室主任。
Ning Lu教授研究兴趣与专长为:Rainfall and seepage induced slope instability and landslides; Electric, thermal, hydrological, chemical, and mechanical phenomena in soil; Hydro-mechanical behavior of swelling and collapsible soil;Vadose zone and hillslope hydrology。 鉴于在这些领域的卓越贡献,Ning Lu教授获美国土木工程师学会最高奖Normal Medal(2007)、以及James J. Croes Medal(2010)、Maurice A. Biot Medal(2017)、Ralph B. Peck Medal(2017)金质勋章;入选为美国土木工程师学会会士、美国地质学会会士、美国工程力学学会会士,及美国地球物理学会终身会员。Ning Lu教授热情服务于Vadose Zone Journal(副主编),Geotechnical Testing Journal(编委)。
Ning Lu教授是13项美国国家自然科学基金的PI,也是多项美国能源部,美国宇航局,美国地质调查局项目的PI, 是137篇Peer-Reviewed Journal Articles的主要作者,Google Scholar统计被引9624次,其中多篇为美国土木工程师学会获奖作品,最高引用率文章,最高阅读率文章,杂志主编推荐文章,以及Google Scholar工程科学领域最高引用率经典文章。 代表著作《非饱和土力学》(John Wiley & Sons,2004)和《斜坡水文与稳定》(Cambridge University Press,2013)在国际上获得广泛好评和引用,其中文译版均在中国高等教育出版社大量出版。Ning Lu教授是三维变饱和边坡稳定软件SLOPE CUBE的主要开发者。SLOPE CUBE是目前全球使用率最高的非饱和大型软件HYDRUS的分程序。Ning Lu教授是美国Soil Water Retention有限公司的创办人和总裁。该公司研发的瞬态水土特征和渗透系数速测仪,相对湿度控制仪,以及土壤收缩控测仪已在全球范围内得以应用。
讲座内容与安排
第1讲 (9月16日, 上午9:00-9:50):
Unsaturated Soil Mechanics: fundamental challenges, breakthroughs, and opportunities
Reference: Lu, N. "Unsaturated Soil Mechanics: Fundamental Challenges, Breakthroughs, and Opportunities." J. of Geotech. and Geoenv. Eng. 146.5 (2020): 02520001.
第2讲 (9月16日, 上午10:00-10:45):
Linking soil water adsorption to geotechnical engineering properties I: physics laws
Reference: Lu, N. "Linking soil water adsorption to geotechnical engineering properties." Geotechnical Fundamentals for Addressing New World Challenges. Springer, Cham, 2019. 93-139.
第3讲 (9月23日,上午9:00-9:50):
Linking soil water adsorption to geotechnical engineering properties II: physics principles
Reference: Lu, N. "Linking soil water adsorption to geotechnical engineering properties." Geotechnical Fundamentals for Addressing New World Challenges. Springer, Cham, 2019. 93-139.
第4讲 (9月23日,上午10:00-10:45):
Linking soil water adsorption to geotechnical engineering properties IIII: physicochemical and geotechnical properties
Reference: Lu, N. "Linking soil water adsorption to geotechnical engineering properties." Geotechnical Fundamentals for Addressing New World Challenges. Springer, Cham, 2019. 93-139.
第5讲 (9月30日,上午9:00-9:50):
Soil sorptive potential: concept, theory, and verification
Reference: Lu, N., and Chao Zhang. "Soil sorptive potential: Concept, theory, and verification." J. of Geotech. and Geoenv. Eng. 145.4 (2019): 04019006.
第6讲 (9月30日,上午10:00-10:45):
Soil sorptive potential: experimental validation and determination
Reference: Zhang, C., and N. Lu. "Soil sorptive potential: Its determination and predicting soil water density." J. of Geotech. and Geoenv. Eng. 146.1 (2020): 04019118.
第7讲 (10月7日,上午9:00-9:50):
Soil sorptive potential: vapor sorption isotherm theory: BET theory
Reference: Zhang, C., and N. Lu. "Augmented Brunauer–Emmett–Teller equation for water adsorption on soils." Vadose Zone J. 18.1 (2019): 1-12.
第8讲 (10月7日,上午10:00-10:45):
Soil sorptive potential: vapor sorption isotherm theory: augmented BET theory
Reference: Lu, N., and C. Zhang. "Separating external and internal surface areas of soil particles." J. of Geotech. and Geoenv. Eng. 146.2 (2020): 04019126.
第9讲 (10月14日,上午9:00-9:50):
Soil physicochemical properties: specific surface area
Reference: Khorshidi, M., et al. "Intrinsic relationship between specific surface area and soil water retention." J. of Geotech. and Geoenv. Eng. 143.1 (2017): 04016078.
第10讲 (10月14日,上午10:00-10:45):
Soil physicochemical properties: cation exchange capacity
References: Khorshidi, M., and N. Lu. "Intrinsic relation between soil water retention and cation exchange capacity." J. of Geotech. and Geoenv. Eng. 143.4 (2017): 04016119.
Khorshidi, M., and N. Lu. "Determination of cation exchange capacity from soil water retention curve." J. of Eng. Mechan. 143.6 (2017): 04017023.
Khorshidi, M., and N. Lu. "Quantification of exchangeable cations using soil water retention curve." J. of Geotech. and Geoenv. Eng. 143.9 (2017): 04017057.
第11讲 (10月21日,上午9:00-9:50):
General soil water retention curve: capillary vs adsorption
References:Revil, A., and N. Lu. "Unified water isotherms for clayey porous materials." Water Resources Research 49.9 (2013): 5685-5699.
Lu, Ning. "Generalized soil water retention equation for adsorption and capillarity." J. of Geotech. and Geoenv. Eng. 142.10 (2016): 04016051.
第12讲 (10月21日,上午10:00-10:45):
Soil sorptive potential: soil water sorption hysteresis mechanism
Reference: Lu, N., and Morteza Khorshidi. "Mechanisms for soil-water retention and hysteresis at high suction range." J. of Geotech. and Geoenv. Eng. 141.8 (2015): 04015032.
第13讲 (10月28日,上午9:00-9:50):
Soil effective stress: classical theories of Terzhaghi, Bishop, and Fredlund and Morgenstein
References: Fredlund, D. G., and N. R. Morgenstern. "Stress state variables for unsaturated soils." J. of Geotech. and Geoenv. Eng. 103.ASCE 12919 (1977).
Khalili, N., F. Geiser, and G. E. Blight. "Effective stress in unsaturated soils: Review with new evidence." Int. J. of Geomech. 4.2 (2004): 115-126.
Lu, N.. "Is matric suction a stress variable?." J. of Geotech. and Geoenv. Eng. 134.7 (2008): 899-905.
第14讲 (10月28日,上午10:00-10:45):
Soil effective stress: contemporary theory of Lu et al.-suction stress characteristics curve
Reference: Lu, N., and W. J. Likos. "Suction stress characteristic curve for unsaturated soil." J. of Geotech. and Geoenv. Eng. 132.2 (2006): 131-142.
Lu, N., J. W. Godt, and David T. Wu. "A closed‐form equation for effective stress in unsaturated soil." Water Resources Research 46.5 (2010).
Lu, N., et al. "Tensile strength of unsaturated sand." J. of Eng. Mech. 135.12 (2009): 1410-1419.
第15讲 (11月11日,上午9:00-9:50):
Soil effective stress: unified theory for capillary and adsorption
Reference: Zhang, C., and N. Lu. "Unified effective stress equation for soil." J. of Eng. Mech. 146.2 (2020).
第16讲 (11月11日,上午10:00-10:45):
Soil effective stress: determination by shear and tensile strength, by soil water retention, and by soil shrinkage behavior
References: Oh, S., et al. "Experimental validation of suction stress characteristic curve from nonfailure triaxial K0 consolidation tests." J. of Geotech. and Geoenv. Eng. 139.9 (2013): 1490-1503.
Lu, N., and M. Kaya. "A drying cake method for measuring suction-stress characteristic curve, soil–water-retention curve, and hydraulic conductivity function." Geotech. Testing J.l 36.1 (2013): 1-19.
Lu, N., M. Kaya, and J. W. Godt. "Interrelations among the soil-water retention, hydraulic conductivity, and suction-stress characteristic curves." J. of Geotech. and Geoenv. Eng. 140.5 (2014): 04014007.
第17讲 (11月18日,上午9:00-9:50):
Soil effective stress: soil shrinkage behavior
References: Dong, Y., and N. Lu. "Measurement of suction-stress characteristic curve under drying and wetting conditions." Geotech. Testing J. 40.1 (2017): 107-121.
Chen, P., and N. Lu. "Generalized equation for soil shrinkage curve." J. of Geotech. and Geoenv. Eng 144.8 (2018): 04018046.
Dong, Y., N. Lu, and P. J. Fox. "Drying-induced consolidation in soil." J. of Geotech. and Geoenv. Eng. 146.9 (2020): 04020092.
第18讲 (11月18日,上午10:00-10:45):
Soil water potential: concepts, physical basis, general forms, and challenges
References: Khorshidi, M., N. Lu, and A. Khorshidi. "Intrinsic relationship between matric potential and cation hydration." Vadose Zone J. 15.11 (2016): 1-12.
Zhang, C., and N. Lu. "What is the range of soil water density? Critical reviews with a unified model." Reviews of Geophysics 56.3 (2018): 532-562.
Zhang, C., and N. Lu. "Unitary definition of matric suction." J. of Geotech. and Geoenv. Eng. 145.2 (2019).
Lu, N.. "Revisiting axis translation for unsaturated soil testing." J. Geotech. Geoenviron. Eng. 145.7 (2019): 02819001.